The European Union has proposed the Artificial Intelligence Act intending to regulate AI systems, especially those used in high-risk, safety-critical applications such as healthcare. Among the Act's articles are detailed requirements for transparency and explainability. The field of explainable AI (XAI) offers technologies that could address many of these requirements. However, there are significant differences between the solutions offered by XAI and the requirements of the AI Act, for instance, the lack of an explicit definition of transparency. We argue that collaboration is essential between lawyers and XAI researchers to address these differences. To establish common ground, we give an overview of XAI and its legal relevance followed by a reading of the transparency and explainability requirements of the AI Act and the related General Data Protection Regulation (GDPR). We then discuss four main topics where the differences could induce issues. Specifically, the legal status of XAI, the lack of a definition of transparency, issues around conformity assessments, and the use of XAI for dataset-related transparency. We hope that increased clarity will promote interdisciplinary research between the law and XAI and support the creation of a sustainable regulation that fosters responsible innovation.


翻译:欧洲联盟提出了《人工情报法》,旨在规范AI系统,特别是高风险、安全关键应用,如医疗保健系统。该法的条款包括详细的透明度和可解释性要求。可解释的AI(XAI)领域提供了可满足许多这些要求的技术。然而,XAI提供的解决办法与AI法的要求之间有很大差异,例如缺乏透明度的明确定义。我们争辩说,律师和XAI研究人员之间的合作对于解决这些差异至关重要。为了确立共同点,我们概述了XAI及其法律相关性,然后阅读了AIA法和相关的一般数据保护条例的透明度和可解释性要求。然后,我们讨论了这些差异可能引起问题的四大主题。具体地说,XAI的法律地位、透明度定义的缺乏、关于一致性评估的问题以及XAI用于与数据集相关的透明度。我们希望,提高法律与XAI之间的清晰度将促进跨学科研究,并支持制定促进负责任创新的可持续条例。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员