This paper investigates the numerical approximation of ground states of rotating Bose-Einstein condensates. This problem requires the minimization of the Gross-Pitaevskii energy $E$ on a Riemannian manifold $\mathbb{S}$. To find a corresponding minimizer $u$, we use a generalized Riemannian gradient method that is based on the concept of Sobolev gradients in combination with an adaptively changing metric on the manifold. By a suitable choice of the metric, global energy dissipation for the arising gradient method can be proved. The energy dissipation property in turn implies global convergence to the density $|u|^2$ of a critical point $u$ of $E$ on $\mathbb{S}$. Furthermore, we present a precise characterization of the local convergence rates in a neighborhood of each ground state $u$ and how these rates depend on the first spectral gap of $E^{\prime\prime}(u)$ restricted to the $L^2$-orthogonal complement of $u$. With this we establish the first convergence results for a Riemannian gradient method to minimize the Gross-Pitaevskii energy functional in a rotating frame. At the same, we refine previous results obtained in the case without rotation. The major complication in our new analysis is the missing isolation of minimizers, which are at most unique up to complex phase shifts. For that, we introduce an auxiliary iteration in the tangent space $T_{\mathrm{i} u} \mathbb{S}$ and apply the Ostrowski theorem to characterize the asymptotic convergence rates through a weighted eigenvalue problem. Afterwards, we link the auxiliary iteration to the original Riemannian gradient method and bound the spectrum of the weighted eigenvalue problem to obtain quantitative convergence rates. Our findings are validated in numerical experiments.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
VIP会员
相关VIP内容
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员