This paper presents Sparse Tensor Classifier (STC), a supervised classification algorithm for categorical data inspired by the notion of superposition of states in quantum physics. By regarding an observation as a superposition of features, we introduce the concept of wave-particle duality in machine learning and propose a generalized framework that unifies the classical and the quantum probability. We show that STC possesses a wide range of desirable properties not available in most other machine learning methods but it is at the same time exceptionally easy to comprehend and use. Empirical evaluation of STC on structured data and text classification demonstrates that our methodology achieves state-of-the-art performances compared to both standard classifiers and deep learning, at the additional benefit of requiring minimal data pre-processing and hyper-parameter tuning. Moreover, STC provides a native explanation of its predictions both for single instances and for each target label globally.
翻译:本文介绍了由量子物理学中国家叠加概念启发的绝对数据监督分类算法“Sprassy Tensor分类”(STC),这是受量子物理学中国家叠加概念启发的绝对数据的受监督分类算法。通过将观测视为特征的叠加,我们引入了机器学习中的波粒双重性概念,并提出了一个统一传统和量子概率的普遍框架。我们表明STC拥有大多数其他机器学习方法所没有的广泛的适当属性,但同时也非常容易理解和使用。 STC关于结构化数据和文本分类的经验性评估表明,我们的方法与标准分类和深度学习相比,都取得了最先进的性能,从而增加了要求最低程度的数据预处理和超分数调制的效益。此外,STC对它预测的单例和全球每个目标标签都作了本土解释。