In this work, we propose a novel method for generating 3D point clouds that leverage properties of hyper networks. Contrary to the existing methods that learn only the representation of a 3D object, our approach simultaneously finds a representation of the object and its 3D surface. The main idea of our HyperCloud method is to build a hyper network that returns weights of a particular neural network (target network) trained to map points from a uniform unit ball distribution into a 3D shape. As a consequence, a particular 3D shape can be generated using point-by-point sampling from the assumed prior distribution and transforming sampled points with the target network. Since the hyper network is based on an auto-encoder architecture trained to reconstruct realistic 3D shapes, the target network weights can be considered a parametrization of the surface of a 3D shape, and not a standard representation of point cloud usually returned by competitive approaches. The proposed architecture allows finding mesh-based representation of 3D objects in a generative manner while providing point clouds en pair in quality with the state-of-the-art methods.
翻译:在这项工作中,我们提出了一个利用超频网络特性生成 3D 点云的新方法。 与只学习 3D 对象的表示方式的现有方法相反, 我们的方法同时找到该对象及其 3D 表面的表示面。 我们超超光谱方法的主要想法是建立一个超高网络, 将特定神经网络(目标网络)的重量从一个统一的单体球分布成3D 形状进行绘图。 因此, 一个特定的 3D 形状可以使用假设的先前分布和与目标网络转换抽样点的点样抽样抽样来生成。 由于超级网络基于一个经过训练的用于重建现实的 3D 形状的自动编码器结构, 目标网络重量可以被视为3D 形状表面的对称, 而不是通常通过竞争性方法返回的点云的标准表示面。 拟议的结构允许以基因化方式找到3D 对象的基于网格的表示面表示面, 同时提供质量的点云与最新方法的组合。