Let $G$ be a finite Abelian group of order $d$. We consider an urn in which, initially, there are labeled balls that generate the group $G$. Choosing two balls from the urn with replacement, observe their labels, and perform a group multiplication on the respective group elements to obtain a group element. Then, we put a ball labeled with that resulting element into the urn. This model was formulated by P. Diaconis while studying a group theoretic algorithm called MeatAxe (Holt and Rees (1994)). Siegmund and Yakir (2004) partially investigated this model. In this paper, we further investigate and generalize this model. More specifically, we allow a random number of balls to be drawn from the urn at each stage in the Diaconis urn model. For such a case, we verify that the normalized urn composition converges almost surely to the uniform distribution on the group $G$. Moreover, we obtain the asymptotic joint distribution of the urn composition by using the martingale central limit theorem.
翻译:$G$ 是一个有限的 Abelian 顺序组 $d$ 。 我们考虑的是一种骨灰色, 最初有标签的球产生该组 $G$ 。 从骨灰中选择两个球, 替换、 观察其标签, 并对各自的组元素进行分组乘法以获得组元素 。 然后, 我们将一个带有该元素的球贴在骨灰质素中。 这个模型是由 P. Diaconis 在研究一个名为 MacalAxe (Halt and Rees (1994年)) 的组的理论算法时制作的 。 Siegmund 和 Yakir (2004年) 部分调查了这个模型 。 在本文中, 我们进一步调查并概括了这个模型。 更具体地说, 我们允许在 Diaconis urn 模型的每个阶段抽取一个随机数的蛋白质。 对于这样一个案例, 我们核查正常的尿质成分几乎可以 与 G$ G 组的统一分布相匹配 。 此外, 我们通过使用 Martingale Centre centrorem 的中间值来获得 。