Discrete optimal transportation problems arise in various contexts in engineering, the sciences and the social sciences. Often the underlying cost criterion is unknown, or only partly known, and the observed optimal solutions are corrupted by noise. In this paper we propose a systematic approach to infer unknown costs from noisy observations of optimal transportation plans. The algorithm requires only the ability to solve the forward optimal transport problem, which is a linear program, and to generate random numbers. It has a Bayesian interpretation, and may also be viewed as a form of stochastic optimization. We illustrate the developed methodologies using the example of international migration flows. Reported migration flow data captures (noisily) the number of individuals moving from one country to another in a given period of time. It can be interpreted as a noisy observation of an optimal transportation map, with costs related to the geographical position of countries. We use a graph-based formulation of the problem, with countries at the nodes of graphs and non-zero weighted adjacencies only on edges between countries which share a border. We use the proposed algorithm to estimate the weights, which represent cost of transition, and to quantify uncertainty in these weights.


翻译:在工程、科学和社会科学的各种不同情况下,都会出现最不精确的运输问题。基本费用标准往往不为人知,或只是部分为人所知,观察到的最佳解决办法也因噪音而腐蚀。在本文件中,我们建议采取系统办法,从对最佳运输计划的噪音观测中推断出未知的费用。算法只要求有能力解决前方最佳运输问题,这是一个线性程序,并产生随机数字。它有一个巴耶斯语解释,也可以被视为一种随机优化形式。我们用国际移徙流动的例子来说明已制定的方法。据报告,移徙流动数据捕捉了在特定时期内从一国向另一国移动的人数(有声),这可以解释为对最佳运输图进行吵闹的观察,其费用与国家的地理位置有关。我们使用基于图表的这个问题的公式,只有处于图表节点的国家和处于非零加权相近距离的边界的国家才使用。我们使用拟议的算法来估计表明过渡成本的重量,并量化这些重量的不确定性。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Learning to Importance Sample in Primary Sample Space
Arxiv
5+阅读 · 2018年6月12日
Arxiv
3+阅读 · 2015年5月16日
VIP会员
相关资讯
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员