We present new large-scale algorithms for fitting a subgradient regularized multivariate convex regression function to $n$ samples in $d$ dimensions -- a key problem in shape constrained nonparametric regression with applications in statistics, engineering and the applied sciences. The infinite-dimensional learning task can be expressed via a convex quadratic program (QP) with $O(nd)$ decision variables and $O(n^2)$ constraints. While instances with $n$ in the lower thousands can be addressed with current algorithms within reasonable runtimes, solving larger problems (e.g., $n\approx 10^4$ or $10^5$) is computationally challenging. To this end, we present an active set type algorithm on the dual QP. For computational scalability, we allow for approximate optimization of the reduced sub-problems; and propose randomized augmentation rules for expanding the active set. We derive novel computational guarantees for our algorithms. We demonstrate that our framework can approximately solve instances of the subgradient regularized convex regression problem with $n=10^5$ and $d=10$ within minutes; and shows strong computational performance compared to earlier approaches.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年1月26日
Arxiv
0+阅读 · 2024年1月25日
Arxiv
0+阅读 · 2024年1月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年1月26日
Arxiv
0+阅读 · 2024年1月25日
Arxiv
0+阅读 · 2024年1月24日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员