Facial image manipulation is a generation task where the output face is shifted towards an intended target direction in terms of facial attribute and styles. Recent works have achieved great success in various editing techniques such as style transfer and attribute translation. However, current approaches are either focusing on pure style transfer, or on the translation of predefined sets of attributes with restricted interactivity. To address this issue, we propose FacialGAN, a novel framework enabling simultaneous rich style transfers and interactive facial attributes manipulation. While preserving the identity of a source image, we transfer the diverse styles of a target image to the source image. We then incorporate the geometry information of a segmentation mask to provide a fine-grained manipulation of facial attributes. Finally, a multi-objective learning strategy is introduced to optimize the loss of each specific tasks. Experiments on the CelebA-HQ dataset, with CelebAMask-HQ as semantic mask labels, show our model's capacity in producing visually compelling results in style transfer, attribute manipulation, diversity and face verification. For reproducibility, we provide an interactive open-source tool to perform facial manipulations, and the Pytorch implementation of the model.
翻译:外观图像处理是一项新一代任务, 输出面部在面部属性和风格方面转向预期目标方向。 最近的工作在诸如样式传输和属性翻译等各种编辑技术方面取得了巨大成功。 然而, 目前的方法要么侧重于纯样式传输, 要么侧重于以限制互动的方式翻译预设的一组属性。 为了解决这个问题, 我们建议 FacialGAN, 这是一个能够同时进行丰富风格传输和互动面部属性操控的新框架。 在维护源图像特性的同时, 我们将目标图像的不同风格转移到源图像中。 我们随后将一个分割面部的几何学信息纳入源图像中, 以提供精细的面部属性操作。 最后, 引入一个多目标学习战略, 以优化每个特定任务的损失。 在 CelibA- HQ 数据集上进行实验, 以 CelebAMask- HQ 为语义遮罩标签, 展示我们的模型在风格传输、 属性操控、 多样性和面部验证中产生有视觉吸引力的结果的能力 。 为了重新描述, 我们提供了一个互动的开源工具, 来进行面部操纵, 以及 Pytoch 。