Correlative imaging workflows are now widely used in bioimaging and aims to image the same sample using at least two different and complementary imaging modalities. Part of the workflow relies on finding the transformation linking a source image to a target image. We are specifically interested in the estimation of registration error in point-based registration. We propose an application of multivariate linear regression to solve the registration problem allowing us to propose a framework for the estimation of the associated error in the case of rigid and affine transformations and with anisotropic noise. These developments can be used as a decision-support tool for the biologist to analyze multimodal correlative images and are available under Ec-CLEM, an open-source plugin under ICY.
翻译:相关成像工作流程现已广泛用于生物成像,目的是利用至少两种不同和互补的成像模式来模拟同一样本,部分工作流程依靠的是找到将源图像与目标图像联系起来的转变。我们特别有兴趣估计点基登记中的登记错误。我们提议采用多变量线性回归来解决登记问题,以便我们提出一个框架,用以估计在硬质和直角变异和厌异噪音情况下的相关错误。这些发展动态可用作生物学家分析多式相关图像的决策支持工具,并可在ICY下的开放源插件EC-CLEM下查阅。