This paper is a collection of results on combinatorial properties of codes for the Z-channel. A Z-channel with error fraction $\tau$ takes as input a length-$n$ binary codeword and injects in an adversarial manner $n\tau$ asymmetric errors, i.e., errors that only zero out bits but do not flip $0$'s to $1$'s. It is known that the largest $(L-1)$-list-decodable code for the Z-channel with error fraction $\tau$ has exponential (in $n$) size if $\tau$ is less than a critical value that we call the Plotkin point and has constant size if $\tau$ is larger than the threshold. The $(L-1)$-list-decoding Plotkin point is known to be $ L^{-\frac{1}{L-1}} - L^{-\frac{L}{L-1}} $, which equals $1/4$ for unique-decoding with $ L-1=1 $. In this paper, we derive various results for the size of the largest codes above and below the list-decoding Plotkin point. In particular, we show that the largest $(L-1)$-list-decodable code $\epsilon$-above the Plotkin point has size $\Theta_L(\epsilon^{-3/2})$ for any $L-1\ge1$. We also devise upper and lower bounds on the exponential size of codes below the list-decoding Plotkin point.
翻译:本文是 Z 通道代码组合属性的结果汇编 。 一个有错误分数 $\ tau$ 的 Z 通道以对抗方式输入一个长度- $n\ tau$ 的二进制代码词和输入 $n\ tau$ 不对称错误, 也就是说, 错误只出零位但不会翻转美元到$$。 已知有错误分数 Z 通道的最大( L-1) $\ tau$- 列表- 可辨别代码 $\ tau$ 的 Z 通道, 如果$\ tau$ 以小于我们称之为 Plotkin 点的关键值, 而如果 $\ tau$ 的值大于阈值, 则以恒定大小。 $( L-1 $- l- deco) 点已知是 $\ { 1\ - L - l \\\\\\\\\\\\\ \ \ \ \ \ \ \ \ \ \ \ 美元, 美元, 它等于 1/4$ L-1 美元 美元 美元 的独立点 。 在P-1 洛 列表 中, 中, 我们将显示 最大的一个最大值 底码, 的大小, 最大值 。