In the context of optimization approaches to engineering applications, time-consuming simulations are often utilized which can be configured to deliver solutions for various levels of accuracy, commonly referred to as different fidelity levels. It is common practice to train hierarchical surrogate models on the objective functions in order to speed-up the optimization process. These operate under the assumption that there is a correlation between the high- and low-fidelity versions of the problem that can be exploited to cheaply gain information. In the practical scenario where the computational budget has to be allocated between multiple fidelities, limited guidelines are available to help make that division. In this paper we evaluate a range of different choices for a two-fidelity setup that provide helpful intuitions about the trade-off between evaluating in high- or low-fidelity. We present a heuristic method based on subsampling from an initial Design of Experiments (DoE) to find a suitable division of the computational budget between the fidelity levels. This enables the setup of multi-fidelity optimizations which utilize the available computational budget efficiently, independent of the multi-fidelity model used.
翻译:在工程应用的优化方法方面,经常使用耗时的模拟,这些模拟可以配置出不同准确度(通常称为不同的忠诚度)的解决办法;通常的做法是对客观功能的等级替代模型进行培训,以便加快优化进程;这些模拟的运作假设问题的高和低忠诚度版本之间具有相关性,可以利用这些版本来廉价获取信息;在计算预算必须在多个忠诚度之间分配的实际假设中,可用于帮助进行这一分工的指南有限;在本文中,我们评估了两种忠诚性设置的一系列不同选择,就高忠诚度或低忠诚度评价之间的权衡提供了有益的直觉;我们提出了一个基于初步实验设计(DoE)的子抽样的超大方法,以找到在忠诚度水平之间适当划分计算预算的方法;这样可以建立多种忠诚性优化,有效地利用现有的计算预算,独立于所使用的多种忠诚模式。