Information geometry is concerned with the application of differential geometry concepts in the study of the parametric spaces of statistical models. When the random variables are independent and identically distributed, the underlying parametric space exhibit constant curvature, which makes the geometry hyperbolic (negative) or spherical (positive). In this paper, we derive closed-form expressions for the components of the first and second fundamental forms regarding pairwise isotropic Gaussian-Markov random field manifolds, allowing the computation of the Gaussian, mean and principal curvatures. Computational simulations using Markov Chain Monte Carlo dynamics indicate that a change in the sign of the Gaussian curvature is related to the emergence of phase transitions in the field. Moreover, the curvatures are highly asymmetrical for positive and negative displacements in the inverse temperature parameter, suggesting the existence of irreversible geometric properties in the parametric space along the dynamics. Furthermore, these asymmetric changes in the curvature of the space induces an intrinsic notion of time in the evolution of the random field.


翻译:信息几何与统计模型参数空间研究中差异几何概念的应用有关。当随机变量是独立且分布相同的时,基本参数空间呈现出恒定的曲度,这使得地球物理超偏(负)或球形(正)形成。在本文中,我们为第一和第二种基本形式中关于对等等等异质高斯-马尔科夫随机场数的构件得出了封闭式表达式,从而可以计算高斯、平均和主要曲度。使用Markov链蒙特卡洛动态的计算模拟表明,高斯曲线的标志变化与实地阶段转变的出现有关。此外,曲线对于反向温度参数的正偏移和负移而言,高度不对称,表明在与动态相近的对等空间存在不可逆转的几何几何特征。此外,空间曲度的这些不对称变化还引出了随机场演变时间的内在概念。

0
下载
关闭预览

相关内容

专知会员服务
72+阅读 · 2021年5月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月8日
Arxiv
0+阅读 · 2021年11月6日
Computability and Beltrami fields in Euclidean space
Arxiv
0+阅读 · 2021年11月5日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员