In real-life applications, machine learning models often face scenarios where there is a change in data distribution between training and test domains. When the aim is to make predictions on distributions different from those seen at training, we incur in a domain generalization problem. Methods to address this issue learn a model using data from multiple source domains, and then apply this model to the unseen target domain. Our hypothesis is that when training with multiple domains, conflicting gradients within each mini-batch contain information specific to the individual domains which is irrelevant to the others, including the test domain. If left untouched, such disagreement may degrade generalization performance. In this work, we characterize the conflicting gradients emerging in domain shift scenarios and devise novel gradient agreement strategies based on gradient surgery to alleviate their effect. We validate our approach in image classification tasks with three multi-domain datasets, showing the value of the proposed agreement strategy in enhancing the generalization capability of deep learning models in domain shift scenarios.
翻译:在实际应用中,机器学习模型往往面临培训和测试领域之间数据分布发生变化的情景。当目的是对分布作出不同于培训所见分布的预测时,我们在一个领域出现普遍化问题。解决这一问题的方法是使用多个源域的数据学习一个模型,然后将这一模型应用到无形的目标领域。我们的假设是,在进行多个域培训时,每个微型批量中的相冲突的梯度包含与包括测试领域在内的其他领域无关的个别领域特有的信息。如果不加处理,这种分歧可能会降低一般化的性能。在这项工作中,我们确定域变换情景中出现的相互矛盾的梯度,并根据梯度手术设计新的梯度协议战略以缓解其影响。我们用三个多域数据集验证了我们在图像分类任务中的做法,展示了拟议协议战略在加强域变换情景中深学习模型的通用能力方面的价值。