This paper introduces a user-driven evolutionary algorithm based on Quality Diversity (QD) search. During a design session, the user iteratively selects among presented alternatives and their selections affect the upcoming results. We aim to address two major concerns of interactive evolution: (a) the user must be presented with few alternatives, to reduce cognitive load; (b) presented alternatives should be diverse but similar to the previous user selection, to reduce user fatigue. To address these concerns, we implement a variation of the MAP-Elites algorithm where the presented alternatives are sampled from a small region (window) of the behavioral space. After a user selection, the window is centered on the selected individual's behavior characterization, evolution selects parents from within this window to produce offspring, and new alternatives are sampled. Essentially we define an adaptive system of local QD, where the user's selections guide the search towards specific regions of the behavioral space. The system is tested on the generation of architectural layouts, a constrained optimization task, leveraging QD through a two-archive approach. Results show that while global exploration is not as pronounced as in MAP-Elites, the system finds more appropriate solutions to the user's taste, based on experiments with controllable artificial users.


翻译:本文介绍一种基于质量多样性(QD)搜索的用户驱动演化算法。在设计过程中,用户会反复选择候选方案,并且这些选择会影响后续的结果。我们旨在解决交互式演化的两个主要问题:(a)为了减少认知负荷,用户只能面对少量候选方案;(b)呈现的候选方案应该具有多样性,但与前一次用户选择相似,以减少用户疲劳。为了解决这些问题,我们实现了MAP-Elites算法的变体,其中候选方案是从行为空间的一个小区域(窗口)中采样的,当用户进行选择后,窗口会在所选个体的行为特征上居中,并选择父代从该窗口内产生后代来生成新的候选方案。本质上,我们定义了一个地方性的QD自适应系统,用户的选择将引导搜索朝着行为空间的特定区域。该系统在建筑布局生成中进行测试,这是一个受限优化任务,利用双归档方法通过QD进行优化。实验结果表明,尽管全局探索不如MAP-Elites显著,但该系统会根据可控的人工用户的实验找到更合适的解决方案。

0
下载
关闭预览

相关内容

【RecSys22教程】多阶段推荐系统的神经重排序,90页ppt
专知会员服务
26+阅读 · 2022年9月30日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
126+阅读 · 2020年9月6日
VIP会员
相关VIP内容
【RecSys22教程】多阶段推荐系统的神经重排序,90页ppt
专知会员服务
26+阅读 · 2022年9月30日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员