Recently, inversion methods have focused on additional high-rate information in the generator (e.g., weights or intermediate features) to refine inversion and editing results from embedded latent codes. Although these techniques gain reasonable improvement in reconstruction, they decrease editing capability, especially on complex images (e.g., containing occlusions, detailed backgrounds, and artifacts). A vital crux is refining inversion results, avoiding editing capability degradation. To tackle this problem, we introduce Domain-Specific Hybrid Refinement (DHR), which draws on the advantages and disadvantages of two mainstream refinement techniques to maintain editing ability with fidelity improvement. Specifically, we first propose Domain-Specific Segmentation to segment images into two parts: in-domain and out-of-domain parts. The refinement process aims to maintain the editability for in-domain areas and improve two domains' fidelity. We refine these two parts by weight modulation and feature modulation, which we call Hybrid Modulation Refinement. Our proposed method is compatible with all latent code embedding methods. Extension experiments demonstrate that our approach achieves state-of-the-art in real image inversion and editing. Code is available at https://github.com/caopulan/GANInverter/tree/main/configs/dhr.
翻译:最近,转换方法侧重于发电机中的额外高端信息(例如,重量或中间特性),以完善嵌入潜伏代码的转换和编辑结果。虽然这些技术在重建过程中得到了合理的改进,但它们降低了编辑能力,特别是复杂的图像(例如,包含封闭性、详细背景和人工制品)上的编辑能力。一个至关重要的要点是改进转换结果,避免编辑能力退化。为了解决这个问题,我们引入了多梅-特异性混合精炼(DHR),它利用两种主流精细技术的优缺点来保持编辑能力,同时改进忠诚。具体地说,我们首先建议将部分图像的部位分分为两部分:内和外部分。改进过程的目的是保持对内域的可编辑性,改进两个领域的真实性。我们通过重量调制重和特征调来改进这两个部分,我们称之为混合调制成。我们提出的方法与所有潜在代码嵌入方法相容。我们的方法在内部/内部的扩展实验中显示,我们的方法实现了州-州-州/州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-版/州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-</s>