Reasoning about the effect of interventions and counterfactuals is a fundamental task found throughout the data sciences. A collection of principles, algorithms, and tools has been developed for performing such tasks in the last decades (Pearl, 2000). One of the pervasive requirements found throughout this literature is the articulation of assumptions, which commonly appear in the form of causal diagrams. Despite the power of this approach, there are significant settings where the knowledge necessary to specify a causal diagram over all variables is not available, particularly in complex, high-dimensional domains. In this paper, we introduce a new graphical modeling tool called cluster DAGs (for short, C-DAGs) that allows for the partial specification of relationships among variables based on limited prior knowledge, alleviating the stringent requirement of specifying a full causal diagram. A C-DAG specifies relationships between clusters of variables, while the relationships between the variables within a cluster are left unspecified, and can be seen as a graphical representation of an equivalence class of causal diagrams that share the relationships among the clusters. We develop the foundations and machinery for valid inferences over C-DAGs about the clusters of variables at each layer of Pearl's Causal Hierarchy (Pearl and Mackenzie 2018; Bareinboim et al. 2020) - L1 (probabilistic), L2 (interventional), and L3 (counterfactual). In particular, we prove the soundness and completeness of d-separation for probabilistic inference in C-DAGs. Further, we demonstrate the validity of Pearl's do-calculus rules over C-DAGs and show that the standard ID identification algorithm is sound and complete to systematically compute causal effects from observational data given a C-DAG. Finally, we show that C-DAGs are valid for performing counterfactual inferences about clusters of variables.


翻译:有关干预和反事实作用的理论是整个数据科学中发现的一项基本任务。 在过去几十年中,已经为完成这些任务开发了一套原则、算法和工具(Pearl, 2000年)。 文献中发现的一个普遍要求是假设的表达,这些假设通常以因果图的形式出现。 尽管这种方法的力量很大, 但仍有大量的设置, 无法为所有变量指定一个因果图表, 特别是在复杂、 高维域中。 在本文中, 我们引入了一个新的图形化算法工具, 称为 DAGs( 简称, C- DAGs), 以便能够根据有限的先前知识对变量之间的关系进行部分的描述, 减轻指定完整因果图的严格要求。 A- DAGs 指定了变量组之间的关系, 而一个组内的变量之间的关系则没有说明, 并且可以被视为一个对等因果图表类的表示, 共享各组关系。 我们为 C- DAGs( 短期) 、 C- Dality 和 Balbillioral- 的 Cal- deal- dalalalal- dalalalal 数据, 和 Breal- cal- darvial- 显示。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月30日
Arxiv
0+阅读 · 2023年3月28日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员