In this work we present a deep learning approach to conduct hypothesis-free, transcriptomics-based matching of drugs for diseases. Our proposed neural network architecture is trained on approved drug-disease indications, taking as input the relevant disease and drug differential gene expression profiles, and learns to identify novel indications. We assemble an evaluation dataset of disease-drug indications spanning 68 diseases and evaluate in silico our approach against the most widely used transcriptomics-based matching baselines, CMap and the Characteristic Direction. Our results show a more than 200% improvement over both baselines in terms of standard retrieval metrics. We further showcase our model's ability to capture different genes' expressions interactions among drugs and diseases. We provide our trained models, data and code to predict with them at https://github.com/healx/dgem-nn-public.
翻译:在这项工作中,我们提出了一种基于深度学习的方法来开展无假设的基于转录组的药物和疾病匹配。我们提出的神经网络结构是在批准的药物-疾病指标的基础上进行训练的,以病情和药物差异基因表达谱作为输入,并学习识别新的指标。我们组装了一个评估数据集,涵盖68种疾病的疾病-药物指标,并针对基于转录组匹配的两个最广泛使用的基线,CMap和Characteristic Direction,对我们的方法进行了理论评估。我们的结果显示,我们的方法在标准检索指标方面比两个基线提高了200%以上。我们进一步展示了我们模型捕捉不同基因表达之间的药物和疾病交互作用的能力。我们提供了我们训练的模型,数据和代码,以在https://github.com/healx/dgem-nn-public上进行预测。