We propose a novel method for continuous-time feature tracking in event cameras. To this end, we track features by aligning events along an estimated trajectory in space-time such that the projection on the image plane results in maximally sharp event patch images. The trajectory is parameterized by $n^{th}$ order B-splines, which are continuous up to $(n-2)^{th}$ derivative. In contrast to previous work, we optimize the curve parameters in a sliding window fashion. On a public dataset we experimentally confirm that the proposed sliding-window B-spline optimization leads to longer and more accurate feature tracks than in previous work.
翻译:我们提出了在事件相机中连续时间跟踪特征的新方法。 为此, 我们根据空间时的估计轨迹对事件进行匹配, 这样图像平面上的投影将产生最大亮度的事件补丁图像。 轨迹由美元=th} 命令B- spline 参数化, 连续为$( n-2)\\\\\\\\\th} 衍生物。 与先前的工作相比, 我们以滑动窗口的方式优化曲线参数。 在公共数据集中, 我们实验性地确认, 拟议的滑动窗口 B- spline 优化导致比以往工作更长、 更准确的功能轨迹 。