Recent advances in deep learning optimization showed that, with some a-posteriori information on fully-trained models, it is possible to match the same performance by simply training a subset of their parameters. Such a discovery has a broad impact from theory to applications, driving the research towards methods to identify the minimum subset of parameters to train without look-ahead information exploitation. However, the methods proposed do not match the state-of-the-art performance, and rely on unstructured sparsely connected models. In this work we shift our focus from the single parameters to the behavior of the whole neuron, exploiting the concept of neuronal equilibrium (NEq). When a neuron is in a configuration at equilibrium (meaning that it has learned a specific input-output relationship), we can halt its update; on the contrary, when a neuron is at non-equilibrium, we let its state evolve towards an equilibrium state, updating its parameters. The proposed approach has been tested on different state-of-the-art learning strategies and tasks, validating NEq and observing that the neuronal equilibrium depends on the specific learning setup.
翻译:深层次学习优化的最近进展表明,在经过充分训练的模型上,如果掌握一些别有用心的信息,那么就有可能通过仅仅培训其一组参数来匹配同样的性能。这种发现具有广泛的影响,从理论到应用,将研究推向确定最低限度的一组参数的方法,在没有目光学信息开发的情况下进行训练。然而,提议的方法与最先进的性能不匹配,并依赖于无结构的、与世隔绝的模式。在这项工作中,我们把重点从单一参数转向整个神经系统的行为,利用神经平衡的概念(NEq)。当一个神经系统处于一种平衡的配置(意味着它学会了特定的输入-输出关系)时,我们可以停止更新;相反,当一个神经系统处于非平衡状态时,我们让其状态演变为平衡状态,更新其参数。提议的方法已经根据不同的状态的学习战略和任务进行了测试,验证了NEq,并观察到神经平衡取决于具体的学习设置。