In this paper we introduce a novel objective prior distribution levering on the connections between information, divergence and scoring rules. In particular, we do so from the starting point of convex functions representing information in density functions. This provides a natural route to proper local scoring rules using Bregman divergence. Specifically, we determine the prior which solves setting the score function to be a constant. While in itself this provides motivation for an objective prior, the prior also minimizes a corresponding information criterion.
翻译:在本文中,我们引入了一个新的客观的先前分配杠杆, 即信息、 差异和评分规则之间的联系。 特别是, 我们从代表密度函数中信息的曲线函数的起点开始这样做。 这提供了使用 Bregman 差异来达到适当的本地评分规则的自然路径 。 具体地说, 我们确定先解决将评分函数设定为常数的先行方法 。 虽然这本身为先前目标提供了动力, 但先行也尽量减少了相应的信息标准 。