Software repositories such as GitHub host a large number of software entities. Developers collaboratively discuss, implement, use, and share these entities. Proper documentation plays an important role in successful software management and maintenance. Users exploit Issue Tracking Systems, a facility of software repositories, to keep track of issue reports, to manage the workload and processes, and finally, to document the highlight of their team's effort. An issue report is a rich source of collaboratively curated software knowledge, and can contain a reported problem, a request for new features, or merely a question about the software product. As the number of these issues increases, it becomes harder to manage them manually. GitHub provides labels for tagging issues, as a means of issue management. However, about half of the issues in GitHub's top 1000 repositories do not have any labels. In this work, we aim at automating the process of managing issue reports for software teams. We propose a two-stage approach to predict both the objective behind opening an issue and its priority level using feature engineering methods and state-of-the-art text classifiers. We train and evaluate our models in both project-based and cross-project settings. The latter approach provides a generic prediction model applicable for any unseen software project or projects with little historical data. Our proposed approach can successfully predict the objective and priority level of issue reports with 82% and 75% accuracy, respectively. Moreover, we conducted a user study on unlabeled issues from six unseen GitHub projects to assess the performance of the cross-project model on new data. The model achieves 90% accuracy on the sample set.


翻译:GitHub 等软件库存放大量软件实体。 开发者协作讨论、 实施、 使用和分享这些实体。 适当的文件在成功的软件管理和维护中发挥重要作用。 用户利用软件库设施“ 问题跟踪系统”, 跟踪问题报告, 管理工作量和流程, 最后记录团队工作的重点。 问题报告是合作整理软件知识的丰富来源, 可能包含报告的问题、 请求新功能, 或仅包含关于软件产品的问题。 随着这些问题数量的增加, 手工管理这些问题变得更加困难。 GitHub 为标签问题提供了标签, 作为一种问题管理手段。 然而, 大约一半的GitHub 软件库问题都没有任何标签。 在这项工作中, 我们的目标是将管理软件团队问题报告的自动化进程自动化。 我们提出一个两阶段模式, 预测在打开问题的背后的目标, 以及其优先级别上, 使用特别工程方法和最先进的文本分类。 我们用一个小的通用的模型, 来测试我们的Girob 和软件项目中, 任何基于历史优先级的预估项目中, 都提供了一个小的预估测点。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Effective.Modern.C++ 中英文版,334页pdf
专知会员服务
67+阅读 · 2020年11月4日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月26日
Arxiv
20+阅读 · 2020年6月8日
Knowledge Based Machine Reading Comprehension
Arxiv
4+阅读 · 2018年9月12日
VIP会员
相关VIP内容
Effective.Modern.C++ 中英文版,334页pdf
专知会员服务
67+阅读 · 2020年11月4日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员