We show how to edge-unfold a new class of convex polyhedra, specifically a new class of prismatoids (the convex hull of two parallel convex polygons, called the top and base), by constructing a nonoverlapping "petal unfolding" in two new cases: (1) when the top and base are sufficiently far from each other; and (2) when the base is a rectangle and all other faces are nonobtuse triangles. The latter result extends a previous result by O'Rourke that the petal unfolding of a prismatoid avoids overlap when the base is a triangle (possibly obtuse) and all other faces are nonobtuse triangles. We also illustrate the difficulty of extending this result to a general quadrilateral base by giving a counterexample to our technique.
翻译:我们通过在以下两个新情况下建造一个不重叠的“平面展出”, 来显示如何将一个新的锥形多面形, 特别是一个新的棱柱形( 由两个平行的锥形多边形组成, 称为顶部和底部), 其方法是在以下两个新情况下建造一个不重叠的“ 平面展出 ” :(1) 当顶部和底部彼此距离足够远时;(2) 当底部是一个矩形, 而所有其他面面都是非隐形三角形时。 后一种结果延伸了奥罗克先前的结果, 即当底部是一个三角形( 可能隐蔽), 而所有其他面面面是非隐形三角形时, 花瓣会避免重叠 。 我们还展示了将这一结果扩展为一般四边形基的难度, 通过对我们的技巧进行反比。