We design a new algorithm for the Euclidean $k$-means problem that operates in the local model of differential privacy. Unlike in the non-private literature, differentially private algorithms for the $k$-means objective incur both additive and multiplicative errors. Our algorithm significantly reduces the additive error while keeping the multiplicative error the same as in previous state-of-the-art results. Specifically, on a database of size $n$, our algorithm guarantees $O(1)$ multiplicative error and $\approx n^{1/2+a}$ additive error for an arbitrarily small constant $a>0$. All previous algorithms in the local model had additive error $\approx n^{2/3+a}$. Our techniques extend to $k$-median clustering. We show that the additive error we obtain is almost optimal in terms of its dependency on the database size $n$. Specifically, we give a simple lower bound showing that every locally-private algorithm for the $k$-means objective must have additive error at least $\approx\sqrt{n}$.
翻译:与非私人文献不同, 以美元为单位的私家算法对以美元为单位的目标的私家算法有差异性, 产生累加性和倍增性错误。 我们的算法大大减少了累加错误, 同时又保持了与先前最先进的结果相同的倍增错误。 具体地说, 在一个以美元为单位的数据库中, 我们的算法保证了以美元为单位的倍增性错误和以美元为单位的任意的小常数$>0为单位的美元增加值错误。 所有先前的本地模型中的算法都存在累加错误 $\ aprox n ⁇ 2/3+a $。 我们的计算法将扩展至以美元为单位的中间组合。 我们显示,我们获得的添加错误在依赖以美元为单位的数据库大小方面几乎是最佳的。 具体地说, 我们给出了一个简单的下限, 显示每个以美元为单位的目标的本地- 私人算法都必须有至少 $\ approx\ sqrt{n} 。