The fingerprint classification is an important and effective method to quicken the process and improve the accuracy in the fingerprint matching process. Conventional supervised methods need a large amount of pre-labeled data and thus consume immense human resources. In this paper, we propose a new and efficient unsupervised deep learning method that can extract fingerprint features and classify fingerprint patterns automatically. In this approach, a new model named constraint convolutional auto-encoder (CCAE) is used to extract fingerprint features and a hybrid clustering strategy is applied to obtain the final clusters. A set of experiments in the NIST-DB4 dataset shows that the proposed unsupervised method exhibits the efficient performance on fingerprint classification. For example, the CCAE achieves an accuracy of 97.3% on only 1000 unlabeled fingerprints in the NIST-DB4.
翻译:指纹分类是加快进程和提高指纹匹配过程准确性的重要有效方法。 常规监督方法需要大量预贴标签的数据,从而消耗大量人力资源。 在本文中,我们提出了一种新的高效的深层次学习方法,可以提取指纹特征并自动对指纹模式进行分类。 在这种方法中,采用了名为“限制动态自动采集器(CCAE)”的新模型来提取指纹特征,并采用了混合组合战略来获取最终的组群。 在NIST-DB4数据集中进行的一系列实验表明,拟议的未经监督的方法展示了指纹分类的高效性能。例如,在NIST-DB4中,CACE在仅1000个未标的指纹中实现了97.3%的准确性。