Model-based reinforcement learning (RL), which finds an optimal policy using an empirical model, has long been recognized as one of the corner stones of RL. It is especially suitable for multi-agent RL (MARL), as it naturally decouples the learning and the planning phases, and avoids the non-stationarity problem when all agents are improving their policies simultaneously using samples. Though intuitive and widely-used, the sample complexity of model-based MARL algorithms has not been fully investigated. In this paper, our goal is to address the fundamental question about its sample complexity. We study arguably the most basic MARL setting: two-player discounted zero-sum Markov games, given only access to a generative model. We show that model-based MARL achieves a sample complexity of $\tilde O(|S||A||B|(1-\gamma)^{-3}\epsilon^{-2})$ for finding the Nash equilibrium (NE) value up to some $\epsilon$ error, and the $\epsilon$-NE policies with a smooth planning oracle, where $\gamma$ is the discount factor, and $S,A,B$ denote the state space, and the action spaces for the two agents. We further show that such a sample bound is minimax-optimal (up to logarithmic factors) if the algorithm is reward-agnostic, where the algorithm queries state transition samples without reward knowledge, by establishing a matching lower bound. This is in contrast to the usual reward-aware setting, with a $\tilde\Omega(|S|(|A|+|B|)(1-\gamma)^{-3}\epsilon^{-2})$ lower bound, where this model-based approach is near-optimal with only a gap on the $|A|,|B|$ dependence. Our results not only demonstrate the sample-efficiency of this basic model-based approach in MARL, but also elaborate on the fundamental tradeoff between its power (easily handling the more challenging reward-agnostic case) and limitation (less adaptive and suboptimal in $|A|,|B|$), particularly arises in the multi-agent context.


翻译:以模型为基础的强化学习( RL), 它发现使用经验模型的最佳政策, 长期以来被公认为RL 的角点石之一。 它特别适合多试剂 RL (MARL) 。 它自然地分解了学习和规划阶段, 当所有代理商同时使用样本改进政策时避免了非静态问题 。 尽管基于模型的 MARL 算法的样本复杂性尚未得到充分调查 。 在本文中, 我们的目标是解决其抽样复杂性的根本问题 。 我们研究最基本的 MARL 设置 : 双玩家折扣了零和马可夫 。 仅使用基因模型, 我们显示基于模型的MARL 复杂性 O( S ⁇ B) (1- gamma) 美元 (1- gam) 3 ⁇ ⁇ ⁇ ⁇ ⁇ 2} 。 仅仅用于寻找纳什平衡( NE) 的样本值, 接近 美元 错误, 和 美元- NEL 以平滑的游戏为基的游戏 。 美元 IM, 其中的模型 将显示 IM 。

0
下载
关闭预览

相关内容

专知会员服务
53+阅读 · 2020年9月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
蒙特卡罗方法(Monte Carlo Methods)
数据挖掘入门与实战
6+阅读 · 2018年4月22日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
蒙特卡罗方法(Monte Carlo Methods)
数据挖掘入门与实战
6+阅读 · 2018年4月22日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员