We continue the investigation of systems of hereditarily rigid relations started in Couceiro, Haddad, Pouzet and Sch\"olzel [1]. We observe that on a set $V$ with $m$ elements, there is a hereditarily rigid set $\mathcal R$ made of $n$ tournaments if and only if $m(m-1)\leq 2^n$. We ask if the same inequality holds when the tournaments are replaced by linear orders. This problem has an equivalent formulation in terms of separation of linear orders. Let $h_{\rm Lin}(m)$ be the least cardinal $n$ such that there is a family $\mathcal R$ of $n$ linear orders on an $m$-element set $V$ such that any two distinct ordered pairs of distinct elements of $V$ are separated by some member of $\mathcal R$, then $ \lceil \log_2 (m(m-1))\rceil\leq h_{\rm Lin}(m)$ with equality if $m\leq 7$. We ask whether the equality holds for every $m$. We prove that $h_{\rm Lin}(m+1)\leq h_{\rm Lin}(m)+1$. If $V$ is infinite, we show that $h_{\rm Lin}(m)= \aleph_0$ for $m\leq 2^{\aleph_0}$. More generally, we prove that the two equalities $h_{\rm Lin}(m)= log_2 (m)= d({\rm Lin}(V))$ hold, where $\log_2 (m)$ is the least cardinal $\mu$ such that $m\leq 2^\mu$, and $d({\rm Lin}(V))$ is the topological density of the set ${\rm Lin}(V)$ of linear orders on $V$ (viewed as a subset of the power set $\mathcal{P}(V\times V)$ equipped with the product topology). These equalities follow from the {\it Generalized Continuum Hypothesis}, but we do not know whether they hold without any set theoretical hypothesis.


翻译:我们继续调查在库塞罗、哈达德、普泽特和Sch\"olzel"[1]等地开始的僵硬关系系统。我们观察到,在含有美元元素的一套固定的美元上,有一个固定的固定的美元R$,如果而且只有在美元(m-1)和2美元(leqq)的情况下,才会有美元比赛。我们问,当比赛被线性订单取代时,同样的不平等是否还存在。这个问题在线性订单分离方面有着同等的配方。让美元(h_rm)是最低的美元,这样,在美元(m)美元(m_m)上有一个家族的美元($)线性订单,美元(m)美元(m)是最低的美元。我们问,为什么(m)美元(m)不同部分的订购的美元($(m)是平价的。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【微众银行】联邦学习白皮书_v2.0,48页pdf,
专知会员服务
165+阅读 · 2020年4月26日
专知会员服务
61+阅读 · 2020年3月4日
IBM《人工智能白皮书》(2019版),12页PDF,IBM编
专知会员服务
20+阅读 · 2019年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月26日
Arxiv
0+阅读 · 2021年5月25日
SepNE: Bringing Separability to Network Embedding
Arxiv
3+阅读 · 2019年2月26日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员