We introduce a class of integral theorems based on cyclic functions and Riemann sums approximating integrals theorem. The Fourier integral theorem, derived as a combination of a transform and inverse transform, arises as a special case. The integral theorems provide natural estimators of density functions via Monte Carlo integration. Assessments of the quality of the density estimators can be used to obtain optimal cyclic functions which minimize square integrals. Our proof techniques rely on a variational approach in ordinary differential equations and the Cauchy residue theorem in complex analysis.
翻译:我们引入了一组基于循环函数和Riemann总和相近集成理论的综合定理。 Fourier集成定理是变异和反向变异结合产生的,作为一个特例出现。集成定理通过蒙特卡洛集成提供密度函数的自然估计值。对密度估计器质量的评估可以用来获得最佳的循环函数,以最小化平方积分。我们的证据技术依赖于普通差异方程的变异法和复杂分析中Cauchy残余定理的变异法。