This article aims to implement the novel piecewise Maehly based Pad\'e-Chebyshev approximation and study its utility in minimizing the Gibbs phenomenon while approximating piecewise smooth functions in two-dimensions. We first develop a piecewise Pad\'e-Chebyshev method (PiPC) to approximate univariate piecewise smooth functions and then extend the same to a two dimensional space, leading to a piecewise bivariate Pad\'e-Chebyshev approximation (Pi2DPC) for approximating bivariate piecewise smooth functions. The chief advantage of these methods lie in their non dependence on any apriori knowledge of the locations and types of singularities present in the original function. Finally, we supplement our method with numerical results which validate its effectiveness in diminishing the Gibbs phenomenon to negligible levels.
翻译:文章旨在实施小小片段基于 Maehly 的 Pad\'e- Chebyshev 近似法, 并研究其在将 Gibbs 现象最小化中的实用性, 同时在两个二维函数中大致使用小片平滑功能。 我们首先开发了小片Pad\'e- Chebyshev 方法( PiPC ), 以大致使用小片平滑功能, 然后将相同功能扩大到两个维度空间, 从而形成一个小片两维帕德/ e- Chebyshev 近似法( Pi2DPC ), 以匹配双轨平滑函数。 这些方法的主要优点在于它们不依赖于对原始函数中存在的特殊位置和类型的任何优先知识。 最后, 我们用数字结果来补充我们的方法, 以证实其有效性, 将Gibbs 现象降低到可忽略的级别 。