We propose a monotone discretization for the integral fractional Laplace equation on bounded Lipschitz domains with the homogeneous Dirichlet boundary condition. The method is inspired by a quadrature-based finite difference method of Huang and Oberman, but is defined on unstructured grids in arbitrary dimensions with a more flexible domain for approximating singular integral. The scale of the singular integral domain not only depends on the local grid size, but also on the distance to the boundary, since the H\"{o}lder coefficient of the solution deteriorates as it approaches the boundary. By using a discrete barrier function that also reflects the distance to the boundary, we show optimal pointwise convergence rates in terms of the H\"{o}lder regularity of the data on both quasi-uniform and graded grids. Several numerical examples are provided to illustrate the sharpness of the theoretical results.


翻译:我们建议对连接的利普西茨域域域的分解式拉普特方程式采用单色分解。 这种方法受黄和欧伯曼基于四方基的有限差异法的启发, 但定义在任意的无结构网格上, 其范围更灵活, 以近似单一元件。 单整体域的规模不仅取决于本地网格大小, 也取决于与边界的距离, 因为解决方案的H\ “ {o}lder 系数在接近边界时会恶化 。 通过使用一个离散的屏障功能, 也反映与边界的距离, 我们从半统一和分级网格的数据的H\\\{ o}lder 角度显示了最佳的点向趋同率。 提供了几个数字例子, 以说明理论结果的清晰性。

0
下载
关闭预览

相关内容

专知会员服务
27+阅读 · 2021年7月11日
专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
92+阅读 · 2021年6月3日
专知会员服务
82+阅读 · 2021年5月10日
专知会员服务
42+阅读 · 2021年4月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
专知会员服务
27+阅读 · 2021年7月11日
专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
92+阅读 · 2021年6月3日
专知会员服务
82+阅读 · 2021年5月10日
专知会员服务
42+阅读 · 2021年4月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员