Machine Learning has seen tremendous growth recently, which has led to a larger adoption of ML systems for educational assessments, credit risk, healthcare, employment, criminal justice, to name a few. Trustworthiness of ML and NLP systems is a crucial aspect and requires guarantee that the decisions they make are fair and robust. Aligned with this, we propose a framework GYC, to generate a set of counterfactual text samples, which are crucial for testing these ML systems. Our main contributions include a) We introduce GYC, a framework to generate counterfactual samples such that the generation is plausible, diverse, goal-oriented, and effective, b) We generate counterfactual samples, that can direct the generation towards a corresponding condition such as named-entity tag, semantic role label, or sentiment. Our experimental results on various domains show that GYC generates counterfactual text samples exhibiting the above four properties. %The generated counterfactuals can then be fed complementary to the existing data augmentation for improving the debiasing algorithms performance as compared to existing counterfactuals generated by token substitution. GYC generates counterfactuals that can act as test cases to evaluate a model and any text debiasing algorithm.
翻译:最近,机器学习取得了巨大的增长,导致在教育评估、信用风险、保健、就业、刑事司法等方面更广泛地采用了ML系统,以进行教育评估、信用风险、保健、就业、就业、刑事司法等等。ML和NLP系统的可靠性是一个关键方面,需要保证它们所作的决定是公平和稳健的。与此相符合,我们提议了一个GYC框架,以产生一套反事实文本样本,这些样本对于测试这些ML系统至关重要。我们的主要贡献包括a)我们引入了GYC,这是一个生成反事实样本的框架,这样,这一框架可以使这一生成的反事实样本看起来可信、多样、面向目标、有效,b)我们生成反事实样本,能够引导其产生相应的条件,如名称实体标签、语义角色标签或情绪。我们在不同领域的实验结果表明,GYC生成了反事实文本样本,展示了以上四个属性。% 由此产生的反事实可以补充现有的数据增强,改进了偏向性算法的性性,与现有的反事实替代产生的反事实性能相比,我们生成了反事实样本。GYC产生反事实性算法,可以用来测试任何文本模型。