The separation assurance task will be extremely challenging for air traffic controllers in a complex and high density airspace environment. Deep reinforcement learning (DRL) was used to develop an autonomous separation assurance framework in our previous work where the learned model advised speed maneuvers. In order to improve the safety of this model in unseen environments with uncertainties, in this work we propose a safety module for DRL in autonomous separation assurance applications. The proposed module directly addresses both model uncertainty and state uncertainty to improve safety. Our safety module consists of two sub-modules: (1) the state safety sub-module is based on the execution-time data augmentation method to introduce state disturbances in the model input state; (2) the model safety sub-module is a Monte-Carlo dropout extension that learns the posterior distribution of the DRL model policy. We demonstrate the effectiveness of the two sub-modules in an open-source air traffic simulator with challenging environment settings. Through extensive numerical experiments, our results show that the proposed sub-safety modules help the DRL agent significantly improve its safety performance in an autonomous separation assurance task.


翻译:在复杂和高密度空气空间环境中,对空中交通管制员来说,分离保证任务将极具挑战性。深强化学习(DRL)被用于在我们先前工作中开发一个自主的分离保证框架,而我们以前的工作就是在所学的模型建议速度动作。为了提高这一模型在不确定的隐蔽环境中的安全性,我们在此工作中提议在自主分离保证应用程序中为DRL提供一个安全模块。拟议模块直接处理模型不确定性和国家不确定性,以改善安全。我们的安全模块由两个子模块组成:(1) 国家安全子模块以执行时间数据增强方法为基础,在模型输入状态引入州扰动;(2) 示范安全子模块是一个蒙特-卡尔洛省辍学扩展单元,学习DRL模式政策的远地点分布。我们展示了开放源空中交通模拟器中两个子模块在环境环境环境挑战性模拟器中的有效性。我们通过广泛的数字实验,结果显示,拟议的次安全模块有助于DRL代理在自主分离保证任务中大大改进其安全性。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
【综述】自动驾驶领域中的强化学习,附18页论文下载
专知会员服务
172+阅读 · 2020年2月8日
深度学习界圣经“花书”《Deep Learning》中文版来了
专知会员服务
233+阅读 · 2019年10月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
12+阅读 · 2021年6月21日
VIP会员
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员