In this paper we propose an accurate, and computationally efficient method for incorporating adaptive spatial resolution into weakly-compressible Smoothed Particle Hydrodynamics (SPH) schemes. Particles are adaptively split and merged in an accurate manner. Critically, the method ensures that the number of neighbors of each particle is optimal, leading to an efficient algorithm. A set of background particles is used to specify either geometry-based spatial resolution, where the resolution is a function of distance to a solid body, or solution-based adaptive resolution, where the resolution is a function of the computed solution. This allows us to simulate problems using particles having length variations of the order of 1:250 with much fewer particles than currently reported with other techniques. The method is designed to automatically adapt when any solid bodies move. The algorithms employed are fully parallel. We consider a suite of benchmark problems to demonstrate the accuracy of the approach. We then consider the classic problem of the flow past a circular cylinder at a range of Reynolds numbers and show that the proposed method produces accurate results with a significantly reduced number of particles. We provide an open source implementation and a fully reproducible manuscript.
翻译:在本文中,我们提出了一个精确和计算高效的方法,将适应性空间分辨率纳入低压平滑流动流体(SPH)系统。粒子是适应性地分割和以准确的方式合并的。关键是,这种方法确保每个粒子的近邻数量是最佳的,导致一种高效算法。一组背景粒子用来指定基于几何的空间分辨率,其中分辨率与固态体的距离函数,或基于解决方案的适应性分辨率,其中分辨率是计算解决方案的函数。这使我们能够模拟粒子的长度变化为1:250,其粒子比目前报告的其他技术要少得多。该方法的设计是当任何固态体移动时自动适应的。所采用的算法是完全平行的。我们考虑了一系列基准问题,以证明方法的准确性。然后我们考虑典型的问题,即流出一个圆柱子,以一系列的Reynolds编号表示,并表明拟议的方法产生精确结果,粒子数量大大减少。我们提供开放源执行和完全可复制手稿。