A novel yet simple extension of the symmetric logistic distribution is proposed by introducing a skewness parameter. It is shown how the three parameters of the ensuing skew logistic distribution may be estimated using maximum likelihood. The skew logistic distribution is then extended to the skew bi-logistic distribution to allow the modelling of multiple waves in epidemic time series data. The proposed skew-logistic model is validated on COVID-19 data from the UK, and is evaluated for goodness-of-fit against the logistic and normal distributions using the recently formulated empirical survival Jensen-Shannon divergence (${\cal E}SJS$) and the Kolmogorov-Smirnov two-sample test statistic ($KS2$). We employ 95\% bootstrap confidence intervals to assess the improvement in goodness-of-fit of the skew logistic distribution over the other distributions. The obtained confidence intervals for the ${\cal E}SJS$ are narrower than those for the $KS2$ on using this data set, implying that the ${\cal E}SJS$ is more powerful than the $KS2$.
翻译:通过引入一个斜度参数,提出了对称后勤分布的新颖而简单的扩展。它显示了随后的斜度后勤分布的三个参数如何使用最大可能性来估计。然后,斜度后勤分布扩大到斜度双逻辑分布,以便能够模拟流行病时间序列数据中的多波。拟议的斜度后勤分布模型根据英国的COVID-19数据进行验证,并使用最近制定的实验性生存标准Jensen-Shannon差价(美元E}SJS$)和Kolmogorov-Smirnov双模版测试统计(KS2美元),对照后勤和正常分布评估是否合适。我们采用95°靴间信任间隔来评估在其他分布上对斜度后勤分布的优劣性。在使用这一数据集时,美元E}SSSS美元获得的信任间隔比美元2美元要窄,这意味着美元E}SSSS$比美元2美元更强大。