The sparse Johnson-Lindenstrauss transform is one of the central techniques in dimensionality reduction. It supports embedding a set of $n$ points in $\mathbb{R}^d$ into $m=O(\varepsilon^{-2} \lg n)$ dimensions while preserving all pairwise distances to within $1 \pm \varepsilon$. Each input point $x$ is embedded to $Ax$, where $A$ is an $m \times d$ matrix having $s$ non-zeros per column, allowing for an embedding time of $O(s \|x\|_0)$. Since the sparsity of $A$ governs the embedding time, much work has gone into improving the sparsity $s$. The current state-of-the-art by Kane and Nelson (JACM'14) shows that $s = O(\varepsilon ^{-1} \lg n)$ suffices. This is almost matched by a lower bound of $s = \Omega(\varepsilon ^{-1} \lg n/\lg(1/\varepsilon))$ by Nelson and Nguyen (STOC'13). Previous work thus suggests that we have near-optimal embeddings. In this work, we revisit sparse embeddings and identify a loophole in the lower bound. Concretely, it requires $d \geq n$, which in many applications is unrealistic. We exploit this loophole to give a sparser embedding when $d = o(n)$, achieving $s = O(\varepsilon^{-1}(\lg n/\lg(1/\varepsilon)+\lg^{2/3}n \lg^{1/3} d))$. We also complement our analysis by strengthening the lower bound of Nelson and Nguyen to hold also when $d \ll n$, thereby matching the first term in our new sparsity upper bound. Finally, we also improve the sparsity of the best oblivious subspace embeddings for optimal embedding dimensionality.
翻译:松散的 Johnson- Lindenstraus 变换是降低维度的核心技术之一。 它支持将一组美元点嵌入 $\ mathb{R ⁇ d$ = O( varepsilon) $ (lg n) 维度, 同时保存所有双向距离在 $\ pm \ \ varepsilon 美元范围内。 每个输入点 $x 嵌入到 $Ax 。 美元是 美元 美元 = 美元 美元, 美元 美元 = 美元 非 。 由于 美元 美元 = 美元 = 美元 = 美元 = 美元 美元 。 目前 Kane and Nelson (JACM) 显示, 美元 美元 = O( varfl) = Orentrealislentral = $. we lax lax lax lax lax.