Representation learning on graphs that evolve has recently received significant attention due to its wide application scenarios, such as bioinformatics, knowledge graphs, and social networks. The propagation of information in graphs is important in learning dynamic graph representations, and most of the existing methods achieve this by aggregation. However, relying only on aggregation to propagate information in dynamic graphs can result in delays in information propagation and thus affect the performance of the method. To alleviate this problem, we propose an aggregation-diffusion (AD) mechanism that actively propagates information to its neighbor by diffusion after the node updates its embedding through the aggregation mechanism. In experiments on two real-world datasets in the dynamic link prediction task, the AD mechanism outperforms the baseline models that only use aggregation to propagate information. We further conduct extensive experiments to discuss the influence of different factors in the AD mechanism.


翻译:最近,由于应用情况广泛,例如生物信息学、知识图和社会网络等,在演变图上的代表学习最近受到极大关注。图表中的信息传播对于学习动态图示十分重要,而大多数现有方法都是通过汇总实现的。然而,仅仅依靠汇总在动态图示中传播信息,就会导致信息传播的延误,从而影响方法的性能。为了缓解这一问题,我们提议了一个聚合集成(AD)机制,在节点更新通过聚合机制嵌入的信息后,通过传播积极向邻居传播信息。在动态链接预测任务的两个真实世界数据集的实验中,AD机制超越了仅仅利用汇总来传播信息的基线模型。我们进一步进行了广泛的实验,以讨论不同因素在AD机制中的影响。

1
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【2020新书】图机器学习,Graph-Powered Machine Learning
专知会员服务
339+阅读 · 2020年1月27日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
图表示学习Graph Embedding综述
图与推荐
10+阅读 · 2020年3月23日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【2020新书】图机器学习,Graph-Powered Machine Learning
专知会员服务
339+阅读 · 2020年1月27日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
图表示学习Graph Embedding综述
图与推荐
10+阅读 · 2020年3月23日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员