Despite the recent advances of deep neural networks, object detection for adverse weather remains challenging due to the poor perception of some sensors in adverse weather. Instead of relying on one single sensor, multimodal fusion has been one promising approach to provide redundant detection information based on multiple sensors. However, most existing multimodal fusion approaches are ineffective in adjusting the focus of different sensors under varying detection environments in dynamic adverse weather conditions. Moreover, it is critical to simultaneously observe local and global information under complex weather conditions, which has been neglected in most early or late-stage multimodal fusion works. In view of these, this paper proposes a Global-Local Attention (GLA) framework to adaptively fuse the multi-modality sensing streams, i.e., camera, gated camera, and lidar data, at two fusion stages. Specifically, GLA integrates an early-stage fusion via a local attention network and a late-stage fusion via a global attention network to deal with both local and global information, which automatically allocates higher weights to the modality with better detection features at the late-stage fusion to cope with the specific weather condition adaptively. Experimental results demonstrate the superior performance of the proposed GLA compared with state-of-the-art fusion approaches under various adverse weather conditions, such as light fog, dense fog, and snow.


翻译:尽管最近出现了深层神经网络的进展,但是由于对恶劣天气中某些传感器的认知不良,对不利天气的物体探测仍然具有挑战性。多式联运融合不是依赖单一传感器,而是一种有希望的办法,在多个传感器的基础上提供多余的探测信息。然而,大多数现有的多式联运融合方法在动态恶劣天气条件下,在不同的探测环境中,在不同的探测环境中调整不同传感器的焦点方面是无效的。此外,在复杂的天气条件下同时观测当地和全球信息至关重要,在大多数早期或后期的多式联运融合工作中,这种气候条件一直受到忽视,因此,在复杂的天气条件下,对当地和全球信息进行同步观测,这在大多数早期或后期的多式联运融合工作中都受到忽视。有鉴于此,本文件建议建立一个全球-地方注意框架,以便在两个融合阶段,即摄影机、闭门摄影机和激光雷达数据,在适应特定天气状况的适应性融合阶段,即摄影机、闭门摄影机和激光雷达数据,在两个融合阶段,通过当地关注网络,通过全球关注网络,对当地和全球信息进行早期和末阶段的融合,自动将较高重量分配给在较佳的探测特征,以适应特定气候条件的状态下,实验性结果显示,在高度温度下,在高度温度下,在高度温度下,在高度下,在高度温度下进行。

0
下载
关闭预览

相关内容

专知会员服务
30+阅读 · 2021年6月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
11+阅读 · 2022年3月16日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
12+阅读 · 2019年4月9日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员