An unresolved issue in contemporary biomedicine is the overwhelming number and diversity of complex images that require annotation, analysis and interpretation. Recent advances in Deep Learning have revolutionized the field of computer vision, creating algorithms that compete with human experts in image segmentation tasks. Crucially however, these frameworks require large human-annotated datasets for training and the resulting models are difficult to interpret. In this study, we introduce Kartezio, a modular Cartesian Genetic Programming based computational strategy that generates transparent and easily interpretable image processing pipelines by iteratively assembling and parameterizing computer vision functions. The pipelines thus generated exhibit comparable precision to state-of-the-art Deep Learning approaches on instance segmentation tasks, while requiring drastically smaller training datasets, a feature which confers tremendous flexibility, speed, and functionality to this approach. We also deployed Kartezio to solve semantic and instance segmentation problems in four real-world Use Cases, and showcase its utility in imaging contexts ranging from high-resolution microscopy to clinical pathology. By successfully implementing Kartezio on a portfolio of images ranging from subcellular structures to tumoral tissue, we demonstrated the flexibility, robustness and practical utility of this fully explicable evolutionary designer for semantic and instance segmentation.
翻译:在当代生物医学中,一个尚未解决的问题是需要说明、分析和解释的复杂图像数量之多且种类之多,是当代生物医学中一个未解决的问题。深海学习最近的进展使计算机视觉领域发生了革命性的变化,创造了在图像分割任务方面与人类专家竞争的算法。然而,至关重要的是,这些框架需要大量的人文附加说明的数据集用于培训,而由此产生的模型则难以解释。在这个研究中,我们引入了基于卡蒂齐奥的模块化的卡蒂齐奥,一个基于卡蒂齐奥的计算战略,它通过迭代组装和将计算机视觉功能参数化,产生透明且易于解释的图像处理管道。因此,管道产生了与在实例分割任务方面最先进的深层学习方法的相似性展示,同时要求大大缩小培训数据集的规模,使这一方法具有巨大的灵活性、速度和功能性。我们还部署了卡蒂齐奥,以解决四个真实世界使用案例中的语义和实例分割问题,并展示其在从高分辨率显微镜像学到临床病理学的成像环境中的效用。我们成功地将Kartezio用于从子结构结构结构结构到肿瘤结构的图象组合,展示了可完全可变化和实用性结构。</s>