We propose high dynamic range (HDR) radiance fields, HDR-Plenoxels, that learn a plenoptic function of 3D HDR radiance fields, geometry information, and varying camera settings inherent in 2D low dynamic range (LDR) images. Our voxel-based volume rendering pipeline reconstructs HDR radiance fields with only multi-view LDR images taken from varying camera settings in an end-to-end manner and has a fast convergence speed. To deal with various cameras in real-world scenarios, we introduce a tone mapping module that models the digital in-camera imaging pipeline (ISP) and disentangles radiometric settings. Our tone mapping module allows us to render by controlling the radiometric settings of each novel view. Finally, we build a multi-view dataset with varying camera conditions, which fits our problem setting. Our experiments show that HDR-Plenoxels can express detail and high-quality HDR novel views from only LDR images with various cameras.
翻译:我们建议高动态范围光谱场(HDR),即HDHR-Plenoxels,这些光谱场学习3DHD光谱场、几何信息以及2D低动态范围图像所固有的不同相机设置的光学功能。我们基于 voxel 的管道量重建了HDR光谱场,只有以端到端方式从不同相机设置中采集的多视图LDR图像,并具有快速的聚合速度。为了处理现实世界情景中的各种相机,我们引入了一个音调绘图模块,以模拟数字的摄像管(ISP)和分离的辐射测量设置。我们的音调绘图模块允许我们通过控制每个新观点的辐射度设置来做。最后,我们建立了一个多视图数据集,这些数据集符合我们的问题设置。我们的实验显示,HDHRDR-Pleonoxels能够表达来自不同相机的仅LDR图像的详细和高质量的HDR新观点。