In the maritime sector, safe vessel navigation is of great importance, particularly in congested harbors and waterways. The focus of this work is to estimate the distance between an object of interest and potential obstacles using a companion UAV. The proposed approach fuses GPS data with long-range aerial images. First, we employ semantic segmentation DNN for discriminating the vessel of interest, water, and potential solid objects using raw image data. The network is trained with both real and images generated and automatically labeled from a realistic AirSim simulation environment. Then, the distances between the extracted vessel and non-water obstacle blobs are computed using a novel GSD estimation algorithm. To the best of our knowledge, this work is the first attempt to detect and estimate distances to unknown objects from long-range visual data captured with conventional RGB cameras and auxiliary absolute positioning systems (e.g. GPS). The simulation results illustrate the accuracy and efficacy of the proposed method for visually aided navigation of vessels assisted by UAV.
翻译:在海洋部门,安全的船舶航行非常重要,特别是在拥挤的港口和水道中。这项工作的重点是利用随行无人驾驶航空器估计一个利益对象与潜在障碍之间的距离。拟议方法将全球定位系统数据与远程空中图像结合。首先,我们使用静语分解 DNN, 使用原始图像数据对船舶、水和潜在固态物体进行区分。网络接受真实和图像生成的培训,并从现实的AirSim模拟环境中自动贴上标签。然后,利用新型的GSD估计算法计算抽取的船舶与非水屏障的距离。根据我们所知,这项工作是首次尝试探测和估计从常规RGB摄像机和辅助绝对定位系统(如全球定位系统)所采集的远程视觉数据中到未知物体的距离。模拟结果说明了在无人驾驶航空器协助下对船只进行视觉辅助导航的拟议方法的准确性和有效性。