Staircases are some of the most common building structures in urban environments. Stair detection is an important task for various applications, including the environmental perception of exoskeleton robots, humanoid robots, and rescue robots and the navigation of visually impaired people. Most existing stair detection algorithms have difficulty dealing with the diversity of stair structure materials, extreme light and serious occlusion. Inspired by human perception, we propose an end-to-end method based on deep learning. Specifically, we treat the process of stair line detection as a multitask involving coarse-grained semantic segmentation and object detection. The input images are divided into cells, and a simple neural network is used to judge whether each cell contains stair lines. For cells containing stair lines, the locations of the stair lines relative to each cell are regressed. Extensive experiments on our dataset show that our method can achieve high performance in terms of both speed and accuracy. A lightweight version can even achieve 300+ frames per second with the same resolution. Our code and dataset will be soon available at GitHub.
翻译:楼梯是城市环境中最常见的建筑结构。 楼梯探测是各种应用的重要任务, 包括外骨骼机器人、 人形机器人、 拯救机器人的环境观和视力受损者的导航。 大多数现有的楼梯检测算法都难以处理楼梯结构材料的多样性、 极端光线和严重隔离。 受人类感知的启发, 我们提出基于深层学习的端对端方法 。 具体地说, 我们把楼梯探测过程作为多任务处理, 包括粗糙的语义分解和物体探测。 输入图象被分割成细胞, 并且使用简单的神经网络来判断每个细胞是否包含楼梯线 。 对于包含楼梯线的细胞, 与每个细胞相对的楼梯线的位置正在倒退 。 对我们的数据集进行的广泛实验表明, 我们的方法在速度和准确性两方面都能达到高的性能。 轻度版本甚至能够以同一分辨率的每秒达到300+框架。 我们的代码和数据设置将很快在吉他伯获得。