The semi-random graph process is a single player game in which the player is initially presented an empty graph on $n$ vertices. In each round, a vertex $u$ is presented to the player independently and uniformly at random. The player then adaptively selects a vertex $v$, and adds the edge $uv$ to the graph. For a fixed monotone graph property, the objective of the player is to force the graph to satisfy this property with high probability in as few rounds as possible. We focus on the problem of constructing a Hamiltonian cycle in as few rounds as possible. In particular, we present an adaptive strategy for the player which achieves it in $\alpha n$ rounds, where $\alpha < 2.01678$ is derived from the solution to some system of differential equations. We also show that the player cannot achieve the desired property in less than $\beta n$ rounds, where $\beta > 1.26575$. These results improve the previously best known bounds and, as a result, the gap between the upper and lower bounds is decreased from 1.39162 to 0.75102.
翻译:半随机图形进程是一个单玩家游戏, 玩家最初在游戏中展示了一个以美元为顶点的空图。 在每一回合中, 一个顶点美元是独立、 任意地向玩家展示一个顶点美元。 玩家然后根据情况选择一个顶点美元v$, 并在图形中添加一个边缘美元。 对于一个固定的单点字图形属性, 玩家的目标是在尽可能短的回合中强制图形以高概率满足此属性。 我们集中关注在尽可能短的回合中构建汉密尔顿周期的问题。 我们特别为玩家提出了一个适应策略, 以美元/ alpha n 圆实现该选项。 此时, $/ alpha < 2.01678$是从某种差异方程的解决方案中衍生出来的。 我们还表明, 玩家无法在低于$\beta n 圆( $\beta n n$ > 1. 266575美元) 的回合中实现所期望的属性。 这可以改善先前已知的最佳界限, 结果, 上下界和下界之间的距离差距从1.391626202 。