How someone allocates their time is important to their health and well-being. In this paper, we show how evolutionary algorithms can be used to promote health and well-being by optimizing time usage. Based on data from a large population-based child cohort, we design fitness functions to explain health outcomes and introduce constraints for viable time plans. We then investigate the performance of evolutionary algorithms to optimize time use for four individual health outcomes with hypothetical children with different day structures. As the four health outcomes are competing for time allocations, we study how to optimize multiple health outcomes simultaneously in the form of a multi-objective optimization problem. We optimize one-week time-use plans using evolutionary multi-objective algorithms and point out the trade-offs achievable with respect to different health outcomes.
翻译:一个人如何分配时间对其健康和福祉很重要。 在本文中, 我们展示了如何通过优化时间使用, 将进化算法用于促进健康和福祉。 根据大量以人口为基础的儿童群体提供的数据, 我们设计健身功能, 解释健康结果, 并为可行的时间计划引入限制。 然后我们调查进化算法的运作情况, 以优化四个个人健康结果的时间使用, 假设儿童有不同的日间结构。 当四个健康结果竞相争取时间分配时, 我们研究如何以多目标优化问题的形式同时优化多重健康结果。 我们利用进化多目标算法优化一周的时间使用计划, 并指出在不同健康结果方面可以实现的权衡。