For an undirected unweighted graph $G=(V,E)$ with $n$ vertices and $m$ edges, let $d(u,v)$ denote the distance from $u\in V$ to $v\in V$ in $G$. An $(\alpha,\beta)$-stretch approximate distance oracle (ADO) for $G$ is a data structure that given $u,v\in V$ returns in constant (or near constant) time a value $\hat d (u,v)$ such that $d(u,v) \le \hat d (u,v) \le \alpha\cdot d(u,v) + \beta$, for some reals $\alpha >1, \beta$. If $\beta = 0$, we say that the ADO has stretch $\alpha$. Thorup and Zwick~\cite{thorup2005approximate} showed that one cannot beat stretch 3 with subquadratic space (in terms of $n$) for general graphs. P\v{a}tra\c{s}cu and Roditty~\cite{patrascu2010distance} showed that one can obtain stretch 2 using $O(m^{1/3}n^{4/3})$ space, and so if $m$ is subquadratic in $n$ then the space usage is also subquadratic. Moreover, P\v{a}tra\c{s}cu and Roditty~\cite{patrascu2010distance} showed that one cannot beat stretch 2 with subquadratic space even for graphs where $m=\tilde{O}(n)$, based on the set-intersection hypothesis. In this paper we explore the conditions for which an ADO can be stored using subquadratic space while supporting a sub-2 stretch. In particular, we show that if the maximum degree in $G$ is $\Delta_G \leq O(n^{1/2-\varepsilon})$ for some $0<\varepsilon \leq 1/2$, then there exists an ADO for $G$ that uses $\tilde{O}(n^{2-\frac {2\varepsilon}{3}})$ space and has a sub-2 stretch. Moreover, we prove a conditional lower bound, based on the set intersection hypothesis, which states that for any positive integer $k \leq \log n$, obtaining a sub-$\frac{k+2}{k}$ stretch for graphs with maximum degree $\Theta(n^{1/k})$ requires quadratic space. Thus, for graphs with maximum degree $\Theta(n^{1/2})$, obtaining a sub-2 stretch requires quadratic space.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年12月3日
Arxiv
0+阅读 · 2023年12月2日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员