In defect prediction community, many defect prediction models have been proposed and indeed more new models are continuously being developed. However, there is no consensus on how to evaluate the performance of a newly proposed model. In this paper, we aim to propose MATTER, a fraMework towArd a consisTenT pErformance compaRison, which makes model performance directly comparable across different studies. We take three actions to build a consistent evaluation framework for defect prediction models. First, we propose a simple and easy-to-use unsupervised baseline model ONE (glObal baseliNe modEl) to provide "a single point of comparison". Second, we propose using the SQA-effort-aligned threshold setting to make a fair comparison. Third, we suggest reporting the evaluation results in a unified way and provide a set of core performance indicators for this purpose, thus enabling an across-study comparison to attain real progress. The experimental results show that MATTER can serve as an effective framework to support a consistent performance evaluation for defect prediction models and hence can help determine whether a newly proposed defect prediction model is practically useful for practitioners and inform the real progress in the road of defect prediction. Furthermore, when applying MATTER to evaluate the representative defect prediction models proposed in recent years, we find that most of them (if not all) are not superior to the simple baseline model ONE in terms of the SQA-effort awareness prediction performance. This reveals that the real progress in defect prediction has been overestimated. We hence recommend that, in future studies, when any new defect prediction model is proposed, MATTER should be used to evaluate its actual usefulness (on the same benchmark test data sets) to advance scientific progress in defect prediction.


翻译:在缺陷预测界,提出了许多缺陷预测模型,而且正在不断开发更多的新模型,然而,在如何评价新提议模型的绩效方面没有达成共识。在本文件中,我们打算提出“MATTER,一个FAMWTWWAFFFMWWWWFFFFMUWWWFAFFTFAFTTTTENTTPExferforforforforforforforForest Comari预测模型,使模型的绩效在各不同研究中直接可比;我们采取三项行动,为缺陷预测模型建立一个一致的评价框架。首先,我们提议建立一个简单、容易使用、容易使用、更新的模型来为缺陷预测模型(gloobbalbalbal Basilli 基础模型(gObalbalbalbalbal bbal b) 提供“单一点比较点”以提供“单一比较点”。第二,我们提议使用SQAA-er-e-eff-e-er-erg 门槛阈值阈值阈值阈值阈值阈值的阈值阈值设定模型来进行公正的实践实践实践实践实践实践实践实践实践实践实践实践实践实践实践实践实践,并告知路上的所有标准测试数据。我们使用的S-测试标准测试标准标准中,我们提出的SF里测测测测测测测测测测路中所有SB。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月22日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
11+阅读 · 2021年3月25日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员