We develop a novel approximate Bayesian computation (ABC) framework, ABCDP, that produces differentially private (DP) and approximate posterior samples. Our framework takes advantage of the Sparse Vector Technique (SVT), widely studied in the differential privacy literature. SVT incurs the privacy cost only when a condition (whether a quantity of interest is above/below a threshold) is met. If the condition is met sparsely during the repeated queries, SVT can drastically reduces the cumulative privacy loss, unlike the usual case where every query incurs the privacy loss. In ABC, the quantity of interest is the distance between observed and simulated data, and only when the distance is below a threshold, we take the corresponding prior sample as a posterior sample. Hence, applying SVT to ABC is an organic way to transform an ABC algorithm to a privacy-preserving variant with minimal modification, but yields the posterior samples with a high privacy level. We theoretically analyze the interplay between the noise added for privacy and the accuracy of the posterior samples.


翻译:我们开发了一个新颖的贝叶斯计算(ABC)框架,即ABCDP(ABCDP)框架,该框架产生不同的私人(DP)和近似子体样本。我们的框架利用了不同隐私文献中广泛研究的微粒矢量技术(SVT)的优势。SVT只有在满足某种条件(是否一定的利息高于/低于临界值)时才产生隐私成本。如果在反复询问中条件很少得到满足,SVT可以大幅降低累积的隐私损失,这与每次查询都造成隐私损失的通常情况不同。在ABC中,利息的数量是观测到的数据与模拟数据之间的距离,只有在距离低于临界值时,我们才将相应的先前样本作为后方样本。因此,对ABC应用SVT是一种有机方式,将ABC算法转换为隐私的变异变异,但生成后方样本的隐私等级较高。我们从理论上分析了为隐私添加的噪音与后方样品准确性之间的相互作用。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
69+阅读 · 2020年10月17日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年4月2日
Arxiv
0+阅读 · 2021年4月1日
Arxiv
0+阅读 · 2021年3月31日
Arxiv
7+阅读 · 2020年6月29日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
69+阅读 · 2020年10月17日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员