A single-photon entangled state (or single-particle entangled state (SPES) in general) can offer a more secure way of encoding and processing quantum information than their multi-photon (or multi-particle) counterparts. The SPES generated via a 2D alternate quantum-walk setup from initially separable states can be either 3-way or 2-way entangled. This letter shows that the generated genuine three-way and nonlocal two-way SPES can be used as cryptographic keys to securely encode two distinct messages simultaneously. We detail the message encryption-decryption steps and show the resilience of the 3-way and 2-way SPES-based cryptographic protocols against eavesdropper attacks like intercept-and-resend and man-in-the-middle. We also detail the experimental realization of these protocols using a single photon, with the three degrees of freedom being OAM, path, and polarization. We have proved that the protocols have unconditional security for quantum communication tasks. The ability to simultaneously encode two distinct messages using the generated SPES showcases the versatility and efficiency of the proposed cryptographic protocol. This capability could significantly improve the throughput of quantum communication systems.
翻译:暂无翻译