The human brain's synapses have remarkable activity-dependent plasticity, where the connectivity patterns of neurons change dramatically, relying on neuronal activities. As a biologically inspired neural network, reservoir computing (RC) has unique advantages in processing spatiotemporal information. However, typical reservoir architectures only take static random networks into account or consider the dynamics of neurons and connectivity separately. In this paper, we propose a structural autonomous development reservoir computing model (sad-RC), which structure can adapt to the specific problem at hand without any human expert knowledge. Specifically, we implement the reservoir by adaptive networks of phase oscillators, a commonly used model for synaptic plasticity in biological neural networks. In this co-evolving dynamic system, the dynamics of nodes and coupling weights in the reservoir constantly interact and evolve together when disturbed by external inputs.
翻译:人类大脑突触具有显著的依赖于活动的可塑性,神经元的连通性模式在依赖神经活动的情况下发生了巨大变化。作为一个生物激励神经网络,储油层计算(RC)在处理时空信息方面具有独特的优势。然而,典型的储油层结构只考虑到静态随机网络,或者单独考虑神经元和连通的动态。在本文中,我们提出了一个结构性自主开发储油层计算模型(sad-RC),这个模型的结构可以在没有人类专业知识的情况下适应手头的具体问题。具体地说,我们通过由相适应的振荡器网络来实施储油层,这是生物神经网络中常用的合成可塑性模型。在这个共同变化的动态系统中,储油层节点和交错重的动态在受到外部投入干扰时会不断相互作用和演变。