Nucleus segmentation is a challenging task due to the crowded distribution and blurry boundaries of nuclei. Recent approaches represent nuclei by means of polygons to differentiate between touching and overlapping nuclei and have accordingly achieved promising performance. Each polygon is represented by a set of centroid-to-boundary distances, which are in turn predicted by features of the centroid pixel for a single nucleus. However, using the centroid pixel alone does not provide sufficient contextual information for robust prediction and thus degrades the segmentation accuracy. To handle this problem, we propose a Context-aware Polygon Proposal Network (CPP-Net) for nucleus segmentation. First, we sample a point set rather than one single pixel within each cell for distance prediction. This strategy substantially enhances contextual information and thereby improves the robustness of the prediction. Second, we propose a Confidence-based Weighting Module, which adaptively fuses the predictions from the sampled point set. Third, we introduce a novel Shape-Aware Perceptual (SAP) loss that constrains the shape of the predicted polygons. Here, the SAP loss is based on an additional network that is pre-trained by means of mapping the centroid probability map and the pixel-to-boundary distance maps to a different nucleus representation. Extensive experiments justify the effectiveness of each component in the proposed CPP-Net. Finally, CPP-Net is found to achieve state-of-the-art performance on three publicly available databases, namely DSB2018, BBBC06, and PanNuke. Code of this paper is available at \url{https://github.com/csccsccsccsc/cpp-net
翻译:核核分离是一项具有挑战性的任务, 原因是核核的分布繁杂且模糊。 最近的方法通过多边形代表核心, 以区分触摸和重叠核的核部分, 并因此取得了有希望的性能。 每个多边形代表着一组中子到边界的距离, 而这反过来又由一个核核的中子像素特性来预测。 但是, 仅使用中子像素并不能为稳健的预测提供足够的背景信息, 从而降低网络的分解准确性 。 为了解决这个问题, 我们提议为核分离建立一个环境觉知多边建议网络网络( CPP- Net) 。 首先, 我们为每个细胞内部的远距离预测采集了一个点, 而不是一个单一的象素。 这个战略大大增强了背景信息, 从而改进了预测的稳健性。 其次, 我们提议一个基于信任的 Weight 模块, 它将来自抽样点的预测结果结合到D 20 的状态。 我们引入了一个新的 Shape- Aware Pervial (SAP) 损失, 将限制预测的多面C- 的公分解数据库的形状。 这里, Suploveal- plical- pal- pal- pal- pal- presulational- ex- preal- preal- preal- preal- preal- preal- preal- preal- resmalbalbal- prebal- presutys- presutusmationalusmational- presmationalmationalususususmationalbilutusbalismusususmusmusmusmmentalbusmusmmentaldows) 在每一个 上, 在每一个- sutusbal 上, 上找到 上, 上, 在每一个- sal- sal</s>