Realtime model learning proves challenging for complex dynamical systems, such as drones flying in variable wind conditions. Machine learning technique such as deep neural networks have high representation power but is often too slow to update onboard. On the other hand, adaptive control relies on simple linear parameter models can update as fast as the feedback control loop. We propose an online composite adaptation method that treats outputs from a deep neural network as a set of basis functions capable of representing different wind conditions. To help with training, meta-learning techniques are used to optimize the network output useful for adaptation. We validate our approach by flying a drone in an open air wind tunnel under varying wind conditions and along challenging trajectories. We compare the result with other adaptive controller with different basis function sets and show improvement over tracking and prediction errors.
翻译:实时模型学习证明对复杂的动态系统(如无人驾驶飞机在可变风条件下飞行等)具有挑战性。深神经网络等机械学习技术具有高代表力,但往往太慢,无法在船上更新。另一方面,适应性控制依赖于简单的线性参数模型,其更新速度可以与反馈控制环一样快。我们提议了一种在线综合适应方法,将深神经网络的产出作为一套能够代表不同风情的基础功能。为了帮助培训,使用了元学习技术优化可用于适应的网络输出。我们验证了我们的方法,在不同的风力条件下和充满挑战的轨迹的开放空气风隧道中飞行无人驾驶无人机。我们与其他适应性控制器比较了不同的基础功能组,并展示了跟踪和预测错误方面的改进。