The covariance matrix adaptation evolution strategy (CMA-ES) is an efficient continuous black-box optimization method. The CMA-ES possesses many attractive features, including invariance properties and a well-tuned default hyperparameter setting. Moreover, several components to specialize the CMA-ES have been proposed, such as noise handling and constraint handling. To utilize these advantages in mixed-integer optimization problems, the CMA-ES with margin has been proposed. The CMA-ES with margin prevents the premature convergence of discrete variables by the margin correction, in which the distribution parameters are modified to leave the generation probability for changing the discrete variable. The margin correction has been applied to ($\mu/\mu_\mathrm{w}$,$\lambda$)-CMA-ES, while this paper introduces the margin correction into (1+1)-CMA-ES, an elitist version of CMA-ES. The (1+1)-CMA-ES is often advantageous for unimodal functions and can be computationally less expensive. To tackle the performance deterioration on mixed-integer optimization, we use the discretized elitist solution as the mean of the sampling distribution and modify the margin correction not to move the elitist solution. The numerical simulation using benchmark functions on mixed-integer, integer, and binary domains shows that (1+1)-CMA-ES with margin outperforms the CMA-ES with margin and is better than or comparable with several specialized methods to a particular search domain.
翻译:协方差矩阵适应进化策略(CMA-ES)是一种高效的连续黑盒优化方法。CMA-ES具有许多有吸引力的特性,包括不变性属性和经过良好调谐的默认超参数设置。此外,已经提出了多个组件来专门化CMA-ES,如噪声处理和约束处理。为了在混合整数优化问题中利用这些优势,提出了结合裕度的CMA-ES算法。CMA-ES算法通过margin校正防止离散变量的过早收敛,在margin校正中,改变分布参数以保留改变离散变量的生成概率。已经将margin校正应用于($\mu/\mu_\mathrm{w}$,$\lambda$)-CMA-ES,而本文将margin校正引入了CMA-ES的精英化版本——(1+1)-CMA-ES算法。(1+1)-CMA-ES算法常用于单峰函数,且计算成本较低。为了解决混合整数优化性能下降的问题,我们将离散化后的精英解用作采样分布的均值,并修改margin校正以不移动精英解。对于离散、整数和二进制域上的基准函数进行的数值模拟表明,结合裕度的(1+1)-CMA-ES算法优于CMA-ES算法,优于或可与针对特定搜索域的几种专业方法相比。